Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Santu Chakraborty, ${ }^{\text {a }}$
Swarupananda Maiti, ${ }^{\text {b }}$
Rina Ghosh ${ }^{\text {b }}$ and
Alok. K. Mukherjee ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Physics, Jadavpur University, Kolkata 700032, India, and ${ }^{\mathbf{b}}$ Department of
Organic Chemistry, Jadavpur University, Kolkata
700032, India

Correspondence e-mail:
akm_ju@rediffmail.com

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.058$
$w R$ factor $=0.137$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
syn-N-[2-Benzoyl-1-(4-methylphenyl)propyl]acetamide: supramolecular structure formed by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) hydrogen bonds

In the title compound, $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}$, the asymmetric unit contains two independent molecules $(A$ and $B)$ linked by a strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. The molecular assembly in the structure is established by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ (arene) interactions. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving different types of molecules generate an infinite $A B A B \ldots$ chain running parallel to the [001] direction. The combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds results into a two-dimensional supramolecular framework of $R_{5}^{6}(32)$ rings in the (011) plane.

Comment

β-Acetamido ketones serve as potential intermediates in the synthesis of natural products and antibiotics (Wabnitz \& Spencer, 2002). Depending on the types of substitution at the $\mathrm{C}_{\alpha^{-}}, \mathrm{C}_{\beta^{-}}$and keto-C atoms, and the conformational flexibility of the substituent groups, a variety of β-acetamido ketones offering the possibility of intermolecular interactions can be obtained (Ghosh et al., 2005). In a continuation of our studies (Ghosh et al., 2006) of one-pot stereoselective synthesis of β acetamido ketones, the title compound, (I), has been prepared and the crystal structure is reported here.

(I)

The asymmetric unit of (I) consists of two molecules, A ($\mathrm{C} 1-\mathrm{C} 19, \mathrm{~N} 1, \mathrm{O} 1, \mathrm{O} 2)$ and $B(\mathrm{C} 20-\mathrm{C} 38, \mathrm{~N} 2, \mathrm{O} 3, \mathrm{O} 4)$, with similar bond lengths and angles. The normal probability plot analyses (International Tables for X-ray Crystallography, 1974, Vol. IV, pp. 293-309) for both bond lengths and angles show that the differences between the two symmetry independent molecules (Fig. 1) are of a statistical nature; the squares of the correlation factors for bond lengths and angles are 0.97 and 0.95 , respectively. The difference in the conformation of the molecules in (I) can be described by the torsion angles (Table 1) involving the C atoms of the propyl chain, which links the phenyl and benzene rings. In both symmetryindependent molecules, the orientations of the carbonyl and the acetamido groups with respect to the $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ bond is antiperiplanar; the values of the C (carbonyl) $-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-$ N (acetamide) torsion angles are close to 180° (Table 1). The

Figure 1
The asymmetric unit of (I), showing the atom-lebelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a hydrogen bond.

Figure 2
Part of the crystal structure, showing the formation of a $R_{5}^{6}(32)$ ring involving four A type and two B type molecules. H atoms not involved in hydrogen bonding have been omitted for clarity. Atoms marked with the symbols (\#), (\$) and (*) are at the symmetry positions $\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right),(x$, $\left.\frac{1}{2}-y,-\frac{1}{2}+z\right)$ and $(x, y-1, z)$, respectively. Hydrogen bonds are shown as dotted lines.
bond lengths and angles in (I) are comparable with those reported for the anti isomer of the title β-acetamido ketone (Ghosh et al., 2006).

The intermolecular aggregation in (I) is determined by a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) hydrogen bonds (Table 2). Considering only A-type molecules, the phenyl atom C 5 acts as a donor to the acetamido atom O 2 , forming a polymeric $C(10)$ chain (Bernstein et al., 1995) running parallel to the [001] direction. The interlinking of A and B molecules via strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds

Figure 3
Part of the crystal structure of (I), showing the formation of a (011) sheet of $R_{5}^{6}(32)$ rings. H atoms not involved in hydrogen bonding have been omitted for clarity. Hydrogen bonds are shown as dotted lines.
generates an infinite $A B A B \ldots$ chain running parallel to the [001] direction. Additional reinforcement between the molecules of the $A B A B \ldots$ chain is provided by $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) hydrogen bonds. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds connect four A and two B molecules into an R_{5}^{6} (32) ring (Fig. 2); these rings are edge-fused, forming a twodimensional supramolecular grid parallel to the (011) plane (Fig. 3).

Experimental

To a solution of p-tolualdehyde (1 mmol) and propiophenone (1 mmol) in dry acetonitrile (4 ml), $\mathrm{ZrOCl}_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ ($20 \mathrm{~mol} \%$) was added. To the resulting suspension, acetyl chloride (2 mmol) was added and the reaction mixture was stirred at ambient temperature. After completion of the reaction [checked by thin-layer chromatography (TCL) with ethyl acetate-petroleum ether (333-353 K)], the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine $(1 \times 20 \mathrm{ml})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{ml})$. The combined organic layer was washed with NaHCO_{3} solution ($1 \times$ $15 \mathrm{ml})$ followed by water ($1 \times 20 \mathrm{ml}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the crude residue was purified on a silica gel ($60-$ 120 mesh) column after elution with 3:2 EtOAc-petroleum ether ($333-353 \mathrm{~K}$) (yield 94%). Diastereomers were separated by preparative TLC on silica plates using 1:2 EtOAc-petroleum ether ($333-353 \mathrm{~K}$). syn-Isomer (I): m.p. 392 (1) K; analysis found: C 77.23, $\mathrm{H} 6.94, \mathrm{~N} 4.35 \%$; calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}: \mathrm{C} 77.25, \mathrm{H} 7.16, \mathrm{~N} 4.74 \%$. Single crystals of the syn-isomer of (I) were grown by slow evaporation of an EtOAc-hexane (1:10) solution.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}$	$Z=8$
$M_{r}=295.37$	$D_{x}=1.180 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=18.3820(18) \AA$	$\mu=0.08 \mathrm{~mm}^{-1}$
$b=11.7845(12) \AA$	$T=153(2) \mathrm{K}$
$c=16.4961(16) \AA$	Block, colourless
$\beta=111.444(2)^{\circ} \AA$	$0.35 \times 0.12 \times 0.10 \mathrm{~mm}$
$V=3326.1(6) \AA^{3}$	

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.984, T_{\text {max }}=0.992$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.137$
$S=1.04$
5844 reflections
398 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.049 P)^{2} \\
&+0.971 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

O1-C7	1.224 (3)	C8-C9	1.525 (3)
O2-C18	1.242 (3)	C8-C10	1.538 (3)
O3-C26	1.218 (3)	C10-C11	1.521 (3)
O4-C37	1.237 (3)	C18-C19	1.497 (3)
N1-C18	1.337 (3)	C20-C26	1.498 (3)
N1-C10	1.458 (3)	C26-C27	1.526 (3)
N2-C37	1.338 (3)	C27-C29	1.528 (3)
N2-C29	1.468 (3)	C27-C28	1.530 (3)
C1-C7	1.498 (3)	C29-C30	1.524 (3)
C7-C8	1.517 (3)	C37-C38	1.498 (3)
C1-C7-C8-C10	-128.1 (2)	C20-C26-C27-C29	-141.3 (2)
C18-N1-C10-C11	-108.4 (2)	C37-N2-C29-C30	-101.4 (2)
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 10-\mathrm{N} 1$	-179.21 (18)	C26-C27-C29-N2	174.28 (18)
C7-C8-C10-C11	57.0 (3)	C26-C27-C29-C30	53.6 (3)
N1-C10-C11-C16	105.7 (2)	C27-C29-C30-C35	30.1 (3)
C8-C10-C11-C12	50.7 (3)	N2-C29-C30-C31	82.3 (2)

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2$	0.86	2.15	$2.902(3)$	145
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots 4^{\mathrm{i}}$	0.86	1.96	$2.818(3)$	175
C5-H5 $\cdots \mathrm{O}^{\text {ii }}$	0.93	2.47	$3.354(3)$	160
C34-H34 $\mathrm{Cl}^{\mathrm{C}} 1^{\mathrm{i}}$	0.93	2.75	$3.564(3)$	146

Symmetry codes: (i) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2} . C g 1$ is the centroid of ring C11C16

H atoms were placed in calculated positions and treated as riding, with $\mathrm{N}-\mathrm{H}=0.86 \AA, \mathrm{C}-\mathrm{H}=0.93$ (aromatic), 0.96 (methyl H) and $0.98 \AA\left(\mathrm{CH}\right.$ group), and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: SHELXL97, PARST95 (Nardelli, 1995) and PLATON (Spek, 2003).

SC thanks the UGC, India, for a research fellowship. Support from CSIR, New Delhi (Scheme Nos. 01/1672/00/ EMR-II and 01/1951/04/EMR-II) as research funding to RG and research fellowship to SM is gratefully acknowledged.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ghosh, R., Maiti, S., Chakraborty, A., Chakraborty, S. \& Mukherjee, A. K. (2006). Tetrahedron, 62, 4059-4064.

Ghosh, R., Maity, S. \& Chakraborty, A. (2005). Synlett. pp. 115-118.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS., University of Gottingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Releases 97-2. University of Gottingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wabnitz, T. C. \& Spencer, J. B. (2002). Tetrahedron Lett. 43, 3891-3894.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

[^0]: © 2006 International Union of Crystallography All rights reserved

